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Abstract-In this present research. the dynamic quasi-bifurcation stability theory is studied in detail.
After some b'lsic concepts of stability of structural dynamical systems have been introduced.
sufficient conditions for instability and necessary conditions for stability of discrete systems are
daived. These conditions 'Ire e,pressed in terms of the properties of structural mass. tangential
damping and stitfness matrices. Thus the paper allows an easy computation of an upper bound of
critical time. in which a stnlctural response way departs into instability.

I. INTRODUCTION

The concept of "quasi-bifurcation" in dynamics was first introduced by Lee (1977). It may
be stated as follows: in analyzing the stability of an unperturbed response of a dynamic
system. all adj,tcent perturbed motions are to be investigated. When the unperturbed motion
is stable. all perturbed motions will remain in the neighborhood of the original response;
when unstable. at least one perturbed motion departs from the neighborhood. This means
certain infinitesimal disturbances m,ty amplify with time. if the system is unstable.

Based on this idea. a criterion of dymunic stability was established in terms of the
properties of an c1rective force fiekl (Lee. 1977. 1981). Such a criterion was extended by
Kleiber 1'1 al. (1986) to discrete dynamical systems. A direct objective of developing the
dynamic quasi-bifurcation stability (DQBS) criterion was to determine the behavior of a
response which is stable in a limited time interval 0 < I < I.r • but unstable for I > I...

Kleiber's ,tllempt was to determine the so-called critical time I., by the DQBS criterion.
As the present study will demonstrate. there exist some weak prerequisites in the

derivation of the DQBS criterion in both papers of Lee (1977. 1981) and Kleiber el al.
(1986). In fact. a rigorous derivation of the DQBS criterion only offers a sullicient condition
for instability and a necess,lry condition for stability. as will be shown.

:.. PERTURBED EQUATIONS OF MOTION

Let us consider the response of an arbitrary discrete system with n degrees of freedom.
The nodal displacements and loads are denoted by:

(I)

Any 10ad·deOection path V(P./) shall be described by the nonlinear equations of motion

[\1. V+G(V. V./) = P(/), (. :.) = d .. ./dl (2)

with the global mass matrix 1\1. nO<.htl velocities Vand accelerations V. the matrix function
G of internal nodal forces due to viscous damping as well as elasto-plastic restoring
mechanisms (Kr~itzig. 1990).

It is well known that the nonlinear response V(P./) of(2) may exhibit various instability
phenomena. e.g. bifurcating. diverging or snapping. In order to construct incrcmental-
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iterative procedures for the detection of those responses including their instabilities we
decompose ( I )

+
Y=V+V. P=P+P (3)

+ +
into the fundamental state Y, P and infinitesimal perturbations Y. P of the adjacent state.
Analogous decompositions follow for V, V. Forming the first variation of (2) with respect
to the fundamental state. we receive

.. .
+ + + +

M'Y+Cr'Y+Kr'Y = P

in which the following abbreviations were introduced:

DG/C r = --;- = tangential damping matrix.uy ~

OGI . I . r .Kr = DY 9 = tangentla Stlt ness matnx.

(4)

In the concept of structural stability, cqns (2) and (4) arc dcnoted as unperturbed and
perturbed (or tangential) equations of motion, respectively. If the decompositions of (3)
are accomplished at time 10 , the perturbed equations of motion (4) are generally used to
determine the stability of the unperturbed response (2) at time t lJ' possibly in the sense of
Liapunov (1IN3). When the original response V is stable (asymptotically stable). all per­
turbed motions have to remain in a defined neighborhood of Y (and damp out for I -+ (0).
When unstable, at least one perturbed motion will depart from the neighborhood. and the
originally infinitesimal perturbations will amplify with time. Physically, such a divergence
is called a quasi-bifurc'ltion phenomenon (Lee, 1977).

J. INSTABILITY ASSESSMENT FOR GENERAL DYNAMICAL SYSTEMS

Before evaluating directly the stability of the unperturbed motion, we first investigate
the following two integral identities:

f't~[tr(r)'Y('r)]dl = f' [~T(r),V(r)+tr(r),t(r)]dr.
t n 'u

f' ddt:[~r(r)'~(r)Jdl = (' (~T(r)'~(r)+~I'(r)'~(r)Jdr.
tf) J,o

By integrating twice the terms on the left-hand side of (5), we obtain

!YI'(I)' hI) = !yTUo)' YUo)+ f' [~TUo)' YUo)] dt
'

0

(5)
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!~. T(t). ~'(t) = ~~. T(to)'~' (t0)+ II [~'T (tu)· ~(tf)) dr
'll
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+ + +

where V(to) and \'(tu) are the initial conditions of V(t) at time to. Let

. .
+ + + +

rtt) = !VT(t)·V(t). Z(t) = !VT(t)·V(t).

Then. we have

}\t) = ~'T(tO)'V(to)+ II [~'T(t).V(t)+~T(t),~(t»)dt.
'0

Z(t) = ~'T(tu)· t (tu) + I' [~. T(t)· t (t)+ ~ r(t), ht)l dt.

'll

The initial conditions for the new functions Y(t) and Z(t) are

... + + +
Y(r o) = !VT(tu)·V(tIl) ~ o. Y(tll) = VT(tu)·V(tu).

.. .

...... ...
Z(tu) = !VT(tu)'V(tu) ~ o. Z(tll) = VT(tll)·V(t ll ).

(7)

(8)

(9)

Mathematic:llly. Y(t) and Z(t) charm:terize the squares of the norms of displ:lccment
and velocity vectors in the phase plane. According to Liapunov's general definitions (1893)
we lind. the original motion st:lble. if. after a set of sulliciently small initial disturbances.
• •
\' (tu). V(t II)' all perturbed motions remain small. Vice versa. if a set of small initial dis-
turbances results in only one perturbed motion which amplifies with time. the unperturbed.
motion is unstable. Obviously. if the solution V(t) is known. not only for one particul:lr set
of initial values. but also for all initial values in the neighborhood of the original motion.
it is easy to determine whether the criterion for Liapunov stability is satisfied or not. In
general. howevt:r. the solution is t:valuated for .\ particular set of initial values. but not
known for all initial values. Therefore. it is of interest to develop other more direct criteria
which enable us to determine the stability of responses without the evaluation of all possible
solutions for all initial values.

On inspection of expressions (7) and (8). we obst:rve two noteworthy features. First.
we consider the inequality

( 10)

In this case we can lind at least one initi.i1 condition Y(t ll ) > 0 with t'(t) > 0 for t ~ tu.

Thus Y(t) will increase monotonously with time. This means the inlinitesimal disturbances
may amplify with time and thus the unperturbed motion will certainly be unstable. On the
other hand. if

It [~T(t).V(t)+~!T(t)·~(t»)dt < o.
10

( 11 )

t'(t) may be either positive or ncgative sincc thC initial condition. }\t ll ). is at onc's own
choice. Thus. the boundedncss of Y(t) is unknown and the stability is also undetermined.
Second. we consider another inequality:
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., .
~.r(t()'\'(tl) > O. ( 12)

In this case. Z(t) is an increasing function at time to. However. if

.
yT(to)·Y(to) ~ O. (13)

Z(t) is a non increasing function.
These properties mentioned above demonstrate that inequalities (10) and (12) may be

employed as the sufficient conditions for instability. while inequalities (II) and (13) form a
necessary condition for stability. respectively. for general dynamical responses.

It is interesting to examine briefly the .~atureof inequality (10). The first term represents
• +

the projection of the acceleration vector yet). at any neighborhood.position. on V(t). The
+

second term presents the square of the norm of the velocity vector Vet). Because the latter
is non-negative. inequality (10) can be abbreviated as

( 14)

~

It is important t(~ note that if Vet) satisfies inequality (14). it certainly will satisfy inequality

(10). However. V(t) satisfying (10) may not satisfy (14). This proves that inequality (10)
may give a more exact assessment for instability than inequality (14). Thus. inequality (14)
is only a sufJicicnt condition for instability.

Referring to the papers of Lee (1977.1981) and Kleiber et al. (1986). inequality (14)
was employed as a condition to determine a so-called critical time till instability. The
analysis given here clearly demonstrates that inequality (14) is only a suflicient condition
for instability rather than a critical condition. In 1~ICt. critical times to be determined by
either (14) or (10). at the utmost can be regarded as an upper limit up to a possible onset
of instability.

4. INSTABILITY CONDITIONS IN STRUCTURAL DYNAMICS

Now let us change to stability problems in the field of structural dynamics. Consider
the applied perturbations being produced by the initial conditions. The perturbed equations
of motion (4) thus will remain a homogeneous form. i.e.

+ .;. +

M'V+CT'V+Kr'V = O. (15)

Because the mass matrix M, in general, is positive definite, eqn (15) may be rewritten as
follows:

Fig. I. Geometry and sign of simple I-D model.
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Fig. 2. Response and instability curves.
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.. .
+ + +
V= -M-1·CT·V-M-1·KT·V. (16)

Substituting (16) into inequalities (11) and (13) leads to

. .
+ • +
vT(to)·[-M-1·C,·Y(to)-M-1·Kr·V(lo)] ~ O. (17)

The first inequ.t1ity of (17) may be further expressed by a matrix form

i'· + [ Ito[VTV
T
]. -M,I'C

T
( 18)

Note that the initial perturbations are arbitrarily given. The following condition thus is
necessary so that inequalities (17) are satisfied:

( 19)

Inequality (19) represents a necessary condition for stability for structural dynamical

Material properties:

E = 34 0 10
I
kN/m2

, 7= 25 kN/m
3

, v= 0.2
Load functions:

P3 =P3S+P30· t, PL=PLS + PLD· t

Fig. 3. Geometry and parameters of isotropic spherical cap (units: m).
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systems. Similarly. sufficient conditions for instability ,an also be obtained from inequalities
(10)and(12):

(20)

Note that both matrices (\, .. I . C rl and (\I ~ I 'I\rl are unsymmetric. Thus the assess­
ment for instability will concern the problem of examination of an unsymmetric matrix
whether it is positive definite or positive semi-definite. Mathematically it is defined that the
matrix is positive definite or positive semi-definite if and only if all eigenvalues of this matrix
are positive or non-negative reats. otherwise it is neither positive definite nor positive semi­
definite. However. if matrices C rand 1\ r are symmetric. e.g. in elastic conservative and
associated plastic systems. all eigenvalues of matrices (\I-I. e l ) and (\I ~ I. Krl are reals.
Inequalities (19) and (20) are thus simplified into

det (Cd;?; 0 and det (I\T) > 0: necessity for stability. (21 )

det (Cd < 0 or det (I\d ~ 0: sufficiency for instability. (22)

For subcases of these criteria see IVHilier (1977).
It should be noted that. although the derivation of the above conditions (21) and (22)

is based on the concept of boundedness of perturbed motions. they are not dependent on
the perturbed motions. but only dependent on the properties of the discussed system itself.

5. L\,.\MI'LES

We first discuss the simple model of fig. I. which is represented by an eccentrically
loaded structural systcm. exhibiting snap-through inst~lbilities.The bar is rigid and ofh:ngth
L. the spring is linear of stifrness k. and the load eccentricity is denoted by c. The bar is
assumed to be weightless. and the mass 11/ of the system is concentrated on the top of the
rod. point B. Its moment of inertia about the hinge :\ is denoted by I. The load is applied
as a I Icaviside fUIH.;tion. with constant magnitude /' and infinite duration. Thus. the model
is a single-degree-of-freedom system ,1Il0 its equation of motion is expressed by Simitses
(llJXlJ. p. )lJ):

0+ sin 0' cos 0 - p' (sin 0 + t;' cos 0) = O.

in which the following nondinlt:nsionalizeJ parameters are introouceJ :

The perturbed form of eqn (23) is written as

o + [C05 (20)-p(cos 0 -t;'sin 0»)' 0 = o.

Thus. the sullicient condition for instability (22) for this system leads to

cos (20)
p ;?; -'~------_.,--"'.

cos 0 - e' Sill 0

(23)

(24)

(25)

(26)

By solving the motion equation (23) numerically. we obtain the responses of the maximum
amplitude 0 m." versus the nondimensionalizcd load parameter [I. for <'!L = 0.02. The results
are presented graphically on Fig. 2. The instability curve obtained from inequality (26) is
also plotted there. We may conclude from both curves that the system will be unstable
for p;?; 0.87. corresponding to Simitscs' results (1989). Physically. the motion is simply
oscillatory for [I < 0.87. When p ;?; 0.87 the motion amplifies from a small amplitude
(0 « rr/2) to very large ones (0 > rr/2) exhibiting a dynamic snap-through instability.
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Fig. 4. Time histories for displacement. velocity and acceleration.

Fundamental motion t =0.080 s

Fig. 5. Graphic display of the deformed shape of spherical cap referred to the fundamental motion
(I = 0.08 s).

Neighbouring motion t :0.080 s
Perturbation: 1st eigenmode ts:O.008 s

Fig. 6. Graphic display of the deformed shape of spherical cap referred to the perturbed motion
(I = 0.08 s).
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As a second example we select the dynamic instability problem of an isotropic clamped
spherical cap with a central opening. subjected to a compound time-dependent load.
P = PL+ P 3 (Fig. 3). The concentrated load. PL. along the rim of the opening. and the
uniformly distributed load. P 3. are assumed as

The analysis is accomplished by employing the finite element numerical method based on
nonlinear shell formulations (Basar. 1985; Kditzig. 1990: Quante. 1987). The time histories
for the displacement. velocity and acceleration are presented in Fig. 4. Because the tangential
stiffness matrix KT becomes singular at I = Icr = 0.008 s. thus we can declare the response
is unstable for I ~ I cr in terms of our derived sufficient conditions for instability (22). In
order to demonstrate our result. the responses of perturbed motion for the displacement.
velocity and acceleration at I = ler are also calculated (see Fig. 4). With reference to these
figures. it is clearly observed that the infinitesimal perturbations amplify with time. The
graphic displays of the deformed shapes of the isotropic spherical cap with respect to the
unperturbed and perturbed motions are shown in Figs 5 and 6. respectively. Obviously. the
former represents the deformed shape of axisymmetric fundamental motion. the latter
represents the antisymmetric unstable mode.

From the examples discussed above. we may confirm that the dynamic stability prob­
lems can bc analyzed by thc method presentcd here. Thc calculations of pcrturbcd motions
arc avoidcd.

6. CONCLUSIONS

The dynamic stability of elastic struc[ures has bccn extensively investigated. Thcre arc
a number of s[ability definitions and methods for dctermining stable or unstable responses.
The prevailing definitions and methods follow Liapunov's ideas based on the concept of
boundedncss of perturbed motions. However. even now it may still be tough to formulate
exact critical conditions by using these methods. Despite the fact tlwt it is in principle not
diflicult to determine the boundedness of a perturbed motion for a particular set of initial
conditions. it seems impossible to calculate the responses for all possible initi.1I conditions
in the neighborhood of the unperturbed motion. From the viewpoint of the time-saving
numerical calculations. it is therefore highly desirous to develop more direct approaches.
As in the paper these conditions should be able to determine the stabili[y of dynamical
sys[ems in terms of the properties of the system itself and the fundamental state. to avoid
the detailed evaluation of perturbed motions for a large number of initial perturbations.
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